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Abstract. Starting from fixed-order perturbation theory (FOPT) we derive expressions for the heavy-
flavour components of the deep-inelastic structure functions (Fi,H(x,Q2,m2

H), i = 2, L;H = c, b, t) in the
variable-flavour number scheme (VFNS). These expressions are valid in all orders of perturbation theory.
This derivation establishes a relation between the parton densities parametrized at nf and nf + 1 light
flavours. One of the results is that the heavy quark parton density does not vanish when the factorization
scale becomes equal to mH contrary to what is assumed in the literature. Further we observe that in
charm electroproduction the exact and asymptotic expressions for the heavy-quark coefficient functions
yield identical results for F2,c(x,Q2,m2

c) when x < 0.01 and Q2 > 20 (GeV/c)2. From this observation and
an analysis of the size of the higher order corrections we conclude that in this region the VFNS description
of F2,c is better than the one given by FOPT. On the other hand in the charm threshold region i.e. x > 0.01
and Q2 < 20 (GeV/c)2 it turns out that the reverse is true.

1 Introduction

The study of charm production in deep-inelastic electron-
proton scattering and in photon-proton scattering pro-
vides us with important information about heavy-quark-
production mechanisms. Here we can distinguish between
intrinsic- [1] and extrinsic-charm [2] production. In the
former case the charm quark appears in the initial state
and it is considered to be a part of the hadronic wave
function so that the dominant production mechanism is
given by the flavour excitation process. Hence this quark
is described by a parton density in the hadron, as in the
cases of the other light flavours (u,d,s) and the gluon
(g). When the charm quark is produced extrinsically it
only appears in the final state and the dominant sub-
process is given by (virtual) photon-gluon-fusion, which
is the only reaction present on the Born level [2]. Hence
one can measure the x-dependence of the gluon density
G(x, µ2), where x denotes the Bjorken scaling variable
and µ stands for the factorization and renormalization
scales. Next-to-leading (NLO) corrections [3,4], to which
also other processes contribute, reveal that this picture
remains unaltered. From the photon-gluon-fusion subpro-
cess one also infers that both the charm quark and the
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charm anti-quark appear back-to-back in the final state.
This is not the case for intrinsic charm production because
of the dominance of the flavour excitation process. Recent
experiments carried out at HERA at Q2 = 0 [5] (photo-
production) or at 10 < Q2 < 100 (GeV/c)2 [6] (electro-
production), where Q2 denotes the virtual photon mass
squared, give strong evidence for extrinsic-charm produc-
tion. Therefore we only concentrate on the latter produc-
tion mechanism in this paper.

As has been mentioned above the extrinsic-charm
mechanism can be studied in photoproduction (Q2 = 0)
and in electroproduction (Q2 > 0). The photoproduction
reaction has the advantage that the production rate is
much larger than in the case of electroproduction because
the latter rate is suppressed by the photon propagator,
which decreases when Q2 gets larger. In the context of per-
turbative QCD, however, the description of electroproduc-
tion is easier due to the absence of the hadronic (resolved)
photon component which contributes in photoproduction
(for a discussion see [7]). Moreover electroproduction en-
ables us to study the charm contribution to the deep-
inelastic structure functions F2(x,Q2) and FL(x,Q2).

For the treatment of the charm component of the struc-
ture functions Fi,c(x,Q2,m2

c) (i = 2, L) one has adopted
two different prescriptions for extrinsic-charm production
in the literature. The first one is advocated in [8] where the
charm quark is treated as a heavy quark and its contribu-
tion is given by fixed-order perturbation theory (FOPT).
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This involves the computation of the photon-gluon-fusion
process mentioned above and its higher order corrections.
Hence the structure functions Fi,c are expressed into con-
volutions of heavy quark coefficient functions with the
three light-flavour densities (u,d,s) and the gluon density
( three-flavour scheme). The second approach is to de-
scribe charm production by introducing a charm quark
density which we will denote by fc(x, µ2). This procedure
is very often refered as the variable flavour number scheme
(VFNS) although its meaning is somehow different (see
[9]). In this scheme the structure functions Fi,c are pre-
sented as convolutions of light-parton coefficient functions
with four light-flavour densities (u,d,s,c) and the gluon
density (four-flavour scheme). At first sight this looks sim-
ilar to intrinsic-charm production. However in the case of
VFNS the x-dependence of the charm quark density is de-
termined via the renormalization group equations (RGE)
by the three light-flavour densities and the gluon den-
sity where one very often imposes the boundary condition
fc(x,m2

c) = 0. These properties do not exist in the intrin-
sic charm approach where this density is obtained from a
model.

It is clear that the VFNS-procedure is not very well
suited to describe charm production in the threshold re-
gion because the photon-gluon fusion process requires that
the charm component of the structure function vanishes
for s = Q2(1 − x)/x < 4m2

c . This threshold condition
does not show up in the x-behaviour of fc(x, µ2). On the
other hand FOPT also has its drawbacks when Q2 gets
very large. The reason is that the heavy-quark coefficient
functions calculated up to NLO in [4] are dominated by
large logarithms of the type lni(Q2/m2

c) lnj(µ2/m2
c) when

Q2 � m2
c [10]. Although it was shown in NLO [11] that

these logarithms lead to rather stable charm structure
functions Fi,c(x,Q2,m2

c) with respect to variations in the
factorization and renormalization scales µ, their size still
warrants some special treatment (for a discussion of the
scale dependence of the charm contribution in the FOPT
and VFNS approaches see also [12–14]). However as we
will show in this paper the above criterion is not sufficient
to decide about the rate of convergence of the perturba-
tion series. It still may happen that these large logarithms
vitiate the perturbation series, in particular when correc-
tions beyond NLO are included. Hence these logarithms
have to be resummed using the standard techniques of the
renormalization group.

Various attempts have been made in the literature to
give a description of Fi,c between the regions near and far
above threshold. They are known by what we will call the
true VFNS. Examples are given in [9] and recently also in
[15]. Here the number of light flavours changes by one unit
while going from the threshold domain to the asymptotic
region. The goal of our paper will be different. In Sect.
2 we want to show that there exists a direct relation be-
tween FOPT at large Q2 and the charm quark density ap-
proach which is usually called VFNS. This relation follows
from the property of mass factorization shown by the large
logarithmic terms lni(Q2/m2

c) lnj(µ2/m2
c) present in the

asymptotic heavy quark coefficient functions. Therefore

in the large Q2-limit one can write the asymptotic FOPT
structure functions Fi,c as convolutions of the light parton
coefficient functions with the four light flavour densities
(u,d,s,c) and the gluon density characteristic of VFNS.
In this way one establishes relations between the parton
densities in the three and four flavour schemes. In partic-
ular it turns out that one can express the charm quark
density fVFNS

c (x, µ2) into the parton densities present in
the three light flavour scheme (FOPT). The most impor-
tant outcome of this expression is that fVFNS

c (x,m2
c) 6= 0

in the MS-scheme contrary to what is imposed on the
charm quark density in the literature. The difference be-
tween our expression for FVFNS

i,c and the one in (9) of [9]
is stressed. A generalization of FVFNS

i,c as presented in (9)
of [9] will be given in all orders of perturbation theory. In
Sect. 3 we investigate at which Q2 the large logarithms
in the heavy-quark coefficient functions actually dominate
the charm component of the structure functions. We will
also study the differences between the FOPT approach
and the VFNS approach for the charm component of the
deep-inelastic structure functions in the x- and Q2-range
explored by present experiments. Finally we investigate
which approach is more stable with respect to higher order
corrections to the charm structure functions. The heavy
quark operator matrix elements (OME’s) needed for the
mass factorization of the asymptotic part of the heavy
quark coefficient functions, which are represented by the
large logarithms above, are presented in Appendices A and
B. In Appendix A we present some heavy-quark OME’s
which were not previously calculated in the literature. In
Appendix B we list all renormalized heavy-quark OME’s
which are needed for our analysis in Sect. 3.

2 Derivation of the VFNS representation
of the structure functions

In this section we present the variable-flavour number
scheme (VFNS) representation of the structure functions
Fi(x,Q2) in all orders of perturbation theory. Our re-
sults hold for any species of heavy quark although at
present collider energies the VFNS is only interesting for
the charm quark. As mentioned in the previous section
logarithms of the type lni(Q2/m2) lnj(µ2/m2) arise in the
heavy-quark coefficient functions when Q2 � m2 and we
work in fixed-order perturbation theory (FOPT). Here m
stands for the mass of the heavy quark, denoted by H in
the subsequent part of this section. When going from the
FOPT representation for the structure functions to that
of the VFNS one has to remove these mass-singular loga-
rithms from the heavy-quark coefficient functions. This is
achieved using the technique of mass factorization, which
is a generalization to all orders in perturbation theory of
the procedure carried out up to lowest order (LO) in Sects.
II D and II E in [9]. Although this procedure resembles
the usual mass factorization of the collinear singularities,
which appear in the partonic structure functions or par-
tonic cross sections, it is actually much more complicated.
This is due to the presence of the light (u,d,s and g) par-
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tons, as well as of the heavy (c,b and t) quarks, in the
Feynman diagrams describing heavy-flavour production.

In the calculations of the heavy-flavour cross sections
the light partons are usually taken to be massless, whereas
the heavy quarks get a mass m 6= 0. Note that the mass is
defined by on-mass-shell renormalization. When Q2 � m2

two types of collinear singularities appear in the partonic
contributions. One type can be attributed to the light par-
tons. In this case the collinear divergences can be reg-
ularized using various techniques. The most well-known
among them is n-dimensional regularization. The second
type can be traced back to the heavy quark and the sin-
gularity manifests itself as m→ 0 in the large logarithmic
terms mentioned above. Beyond order αs both types of
singularities appear in the partonic cross sections and in
the heavy-quark operator matrix elements (OME’s). The
latter show up in the mass-factorization formulae, and
they are needed to remove the mass-singular terms (as
m→ 0) from the heavy-quark coefficient functions. Hence
the mass factorization becomes much more complicated
than when we only have to deal with collinear divergences
due to massless partons. Therefore we first present the
mass factorization with respect to the latter before we ap-
ply this technique to the mass singularities related to the
heavy-quark mass m.

Consider first deep-inelastic electron-proton scattering
in which only light-partons show up in the calculation of
the QCD corrections. The deep-inelastic structure func-
tion Fi(nf , Q2) can be expressed as follows

Fi(nf , Q2)=
1
nf

nf∑
k=1

e2k

[
Σ̂(nf )⊗ F̂S

i,q

(
nf ,

Q2

p2 , µ
2
)

+Ĝ(nf )⊗ F̂S
i,g

(
nf ,

Q2

p2 , µ
2
)

+nf ∆̂k(nf )⊗ F̂NS
i,q

(
nf ,

Q2

p2 , µ
2
)]

. (2.1)

In this equation the charge of the light quark is repre-
sented by ek and nf denotes the number of light flavours.
Further ⊗ denotes the convolution symbol and, for con-
venience, the dependence of all the above quantities on
the hadronic scaling variable x and the partonic scaling
variable z is suppressed. The bare quantities in (2.1) are
indicated by a hat in order to distinguish them from their
finite analogues, which emerge after mass factorization.
Starting with the parton densities, Σ̂(nf ) and Ĝ(nf ) de-
note the singlet combination of light-quark densities and
the gluon density respectively, with nf light flavours. The
former is given by

Σ̂(nf ) =
nf∑
l=1

[
f̂l(nf ) + f̂l̄(nf )

]
, (2.2)

where f̂l(nf ) and f̂l̄(nf ) stand for the light-quark and
light-anti-quark densities respectively. The non-singlet
combination of light-quark densities is given by

∆̂k(nf ) = f̂k(nf ) + f̂k̄(nf )−
1
nf

Σ̂(nf ) . (2.3)

The QCD radiative corrections due to the (virtual)
photon light-parton subprocesses are described by the par-
tonic structure functions F̂i,l(nf ) (i = 2, L; l = q, g) where
l stands for the parton which appears in the initial state.
As with the parton densities they can also be classified
into singlet, non-singlet and gluonic parts. Furthermore we
assume that coupling-constant renormalization has been
performed on the partonic (bare) structure functions,
which is indicated by their dependence on the renormal-
ization scale µ. However they still contain collinear diver-
gences which, for convenience, are regularized by taking
the external momentum p of the incoming parton off-mass-
shell (p2 < 0). Notice that these divergences do not show
up in the final state because the deep-inelastic structure
functions are totally-inclusive quantities.

The reason we choose off-shell regularization is that it
allows us to distinguish between the collinear divergences
coming from the massless partons and from the heavy
quarks. The former divergences are the lni(−µ2/p2) terms
in the perturbative expansion, whereas the latter are the
lni(µ2/m2) terms.

We can now also reexpress (2.1) in finite quantities so
that the collinear divergences are absent. This is achieved
via mass factorization which proceeds as follows

F̂NS
i,q

(
nf ,

Q2

p2 , µ
2
)

= ANS
qq

(
nf ,

µ2

p2

)
⊗CNS

i,q

(
nf ,

Q2

µ2

)
, (2.4)

and

F̂S
i,k

(
nf ,

Q2

p2 , µ
2
)

=
∑
l=q,g

AS
lk

(
nf ,

µ2

p2

)
⊗ CS

i,l

(
nf ,

Q2

µ2

)
.

(2.5)

In the above expressions Ci,k(i = 2, L; k = q, g) denote
the light-parton coefficient functions and the Alk repre-
sent the renormalized operator-matrix elements (OME’s)
which are defined by

Alk

(
nf ,

µ2

p2

)
=< k(p)|Ol(0)|k(p) > , (l, k = q, g) .

(2.6)
Here Ol are the renormalized operators which appear in
the operator-product expansion of two electromagnetic
currents near the light cone. The product of these two cur-
rents is sandwiched between proton states and its Fourier
transform into momentum space defines the structure
functions in (2.1). Like the other quantities Ci,k and Alk

can be divided into singlet and non-singlet parts. The
scale µ appearing in (2.4)–(2.6) originates from operator
renormalization as well as from coupling-constant renor-
malization. Notice that the operator-renormalization scale
is identical to the mass-factorization scale. Using the mass-
factorization relations in (2.4), (2.5) we can cast the
hadronic structure functions Fi(nf , Q2) (2.1) into the form

Fi(nf , Q2)=
1
nf

nf∑
k=1

e2k

[
Σ(nf , µ2)⊗ CS

i,q

(
nf ,

Q2

µ2

)
+G(nf , µ2)⊗ CS

i,g

(
nf ,

Q2

µ2

)
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+nf∆k(nf , µ2)⊗ CNS
i,q

(
nf ,

Q2

µ2

)]
, (2.7)

where the finite (renormalized) parton densities Σ, ∆ and
G are expressed in the bare ones Σ̂, ∆̂ and Ĝ in the fol-
lowing way

∆k(nf , µ2) = ANS
qq

(
nf ,

µ2

p2

)
⊗ ∆̂k(nf ) , (2.8)

Σ(nf , µ2) = AS
qq

(
nf ,

µ2

p2

)
⊗ Σ̂(nf )

+AS
qg

(
nf ,

µ2

p2

)
⊗ Ĝ(nf ) , (2.9)

and

G(nf , µ2) = AS
gq

(
nf ,

µ2

p2

)
⊗ Σ̂(nf )

+AS
gg

(
nf ,

µ2

p2

)
⊗ Ĝ(nf ) . (2.10)

All quantities given above satisfy renormalization
group equations (RGE’s). Here we are only interested in
those RGE’s for the OME’s and the parton densities. De-
fine the differential operator D as

D = µ
∂

∂µ
+ β(nf , g)

∂

∂g
, g ≡ g(nf , µ2) , (2.11)

where αs = g2/(4π), then the OME’s satisfy the following
RGE’s

DANS
qq

(
nf ,

µ2

p2

)
= −γNS

qq (nf )⊗ANS
qq

(
nf ,

µ2

p2

)
, (2.12)

DAS
ij

(
nf ,

µ2

p2

)
= −

∑
k=q,g

γS
ik(nf )⊗AS

kj

(
nf ,

µ2

p2

)
. (2.13)

Here γij denote the anomalous dimensions corresponding
to the operators Oi. They can be expanded as a perturba-
tion series in αs. In Bjorken x-space there exists a relation
between the anomalous dimensions γij and the DGLAP
splitting functions, denoted by Pij , which is given by

γij(nf ) = −Pij(nf ) . (2.14)

Notice that this relation only holds for twist-two oper-
ators. From the above equation one infers that the γij ,
which are the residues of the ultraviolet divergences in
the unrenormalized OME’s, have just the opposite signs
to those of the Pij . The latter show up in the partonic
quantities F̂i,l(nf ) in (2.1) and they represent the residues
of the collinear divergences. We will return to this relation
(2.14) when we discuss the heavy-quark OME’s. The finite
(renormalized) parton densities satisfy the RGE’s

D∆k(nf , µ2) = −γNS
qq (nf )⊗∆k(nf , µ2) , (2.15)

DΣ(nf , µ2) = −γS
qq(nf )⊗Σ(nf , µ2)

−γS
qg(nf )⊗G(nf , µ2) , (2.16)

a b

Fig. 1. O(α2
s) contributions to the purely-singlet parton struc-

ture function FPS
i,q representing the subprocess γ∗ + q→ q + q′

+ q̄′. Here q and q′ are represented by the dashed and solid lines
respectively. In the case of heavy-quark production q′ = H and
these graphs contribute to the heavy-quark coefficient function
HPS

i,q

and

DG(nf , µ2) = −γS
gq(nf )⊗Σ(nf , µ2)

−γS
gg(nf )⊗G(nf , µ2) . (2.17)

From these equations we can derive the Altarelli-Parisi
equations.

Before we add the heavy-quark contributions to the
deep-inelastic structure functions (2.7) it is convenient to
split the singlet quantities F̂S

i,q, CS
i,q and AS

qq into non-
singlet and purely-singlet parts, namely

F̂S
i,q = F̂NS

i,q + F̂PS
i,q , (2.18)

CS
i,q = CNS

i,q + CPS
i,q , (2.19)

and
AS
qq = ANS

qq +APS
qq . (2.20)

This decomposition facilitates the mass factorization of
the heavy-quark coefficient functions and can be explained
as follows. If we calculate the diagrams contributing to
the parton subprocesses with a quark in the initial state,
the resulting expressions have to be projected on the sin-
glet and non-singlet channels with respect to the flavour
group. The latter projection leads to F̂NS

i,q . However the
singlet part i.e. F̂S

i,q can be split into two types of contri-
butions. The first one is equal to F̂NS

i,q whereas the second
one is represented by F̂PS

i,q . The purely-singlet partonic
structure function arises from the Feynman graphs where
the projection on the non-singlet channel yields zero, so
that only singlet contributions remain. They are charac-
terized by those Feynman graphs in which only gluons are
exchanged in the t-channel. Such graphs show up for the
first time in two-loop order. An example is given in Fig. 1.
The same characteristics also hold for APS

qq (see Fig. 2) and
the resulting coefficient function CPS

i,q . Another important
feature is that the purely-singlet quantities are propor-
tional to the number of light flavours nf . This property is
shared by the gluonic quantities F̂S

i,g, CS
i,g and AS

qg. The
proportionality to nf can be traced back to the fact that
in the case of F̂PS

i,q , F̂S
i,g the virtual photon is attached to



M. Buza et al.: Charm electroproduction 305

a b

Fig. 2. O(α2
s) contributions to the purely-singlet OME APS

q′q.
Here q and q′ are represented by the dashed and solid lines
respectively. In the case of q′ = H these graphs contribute to
the heavy-quark OME APS

Hq

the light-quark loop (see e.g. Fig. 1) and one has to sum
over all light flavours. In the case of APS

qq and AS
qg this is

due to the insertion of the operator vertex into the light-
quark loop where also a sum over all light flavours has to
be carried out. Because of the mass-factorization relation
(2.5) the proportionality to nf is transferred to the coef-
ficient functions CPS

i,q , CS
i,g and the anomalous dimensions

γPS
qq , γS

qg. To facilitate the mass factorization of the heavy-
quark coefficient functions it is very convenient to extract
this overall factor of nf from the quantities above so we
define

Ti,k = nf T̃i,k , (2.21)

where

Ti,q = F̂PS
i,q , CPS

i,q ; Ti,g = F̂S
i,g, CS

i,g ; (2.22)

and
Rij = nf R̃ij , (2.23)

where

Rqq = APS
qq , γ

PS
qq ; Rqg = AS

qg , γ
S
qg . (2.24)

Besides the overall dependence on nf , which we have ex-
tracted from the quantities defined by Ti,k and Rij above,
there still remains a residual dependence on nf in T̃i,k
and R̃ij . The latter dependence originates from internal
light-flavour loops which are neither attached to the vir-
tual photon nor to the operator-vertex insertions. Since
there are more contributions to T̃i,k and R̃ij which are
not due to these light flavour-loops it is impossible to ex-
tract an overall factor nf anymore from the quantities
indicated by a tilde. Therefore the dependence of the lat-
ter on nf means that it can be only attributed to internal
light-flavour loops. Using the above definitions one can
now rewrite (2.1) and (2.7) and the results become

Fi(nf , Q2)=
nf∑
k=1

e2k

[
Σ̂(nf )⊗ ˜̂F

PS

i,q

(
nf ,

Q2

p2 , µ
2
)

+ Ĝ(nf )⊗ ˜̂F
S

i,g

(
nf ,

Q2

p2 , µ
2
)

(2.25)

+
{
f̂k(nf ) + f̂k̄(nf )

}
⊗ F̂NS

i,q

(
nf ,

Q2

p2 , µ
2
)]

,

Fi(nf , Q2) =
nf∑
k=1

e2k

[
Σ(nf , µ2)⊗ C̃PS

i,q

(
nf ,

Q2

µ2

)

+ G(nf , µ2)⊗ C̃S
i,g

(
nf ,

Q2

µ2

)
(2.26)

+
{
fk(nf , µ2) + fk̄(nf , µ

2)
}
⊗ CNS

i,q

(
nf ,

Q2

µ2

)]
,

with the relation

fk(nf , µ2) + fk̄(nf , µ
2)

= ANS
qq

(
nf ,

µ2

p2

)
⊗
{
f̂k(nf ) + f̂k̄(nf )

}
+ÃPS

qq

(
nf ,

µ2

p2

)
⊗ Σ̂(nf ) + ÃS

qg

(
nf ,

µ2

p2

)
⊗ Ĝ(nf ) .

(2.27)

Using (2.5), (2.9) and (2.10) one can now write the mass
factorization relations for the quantities indicated by T̃i,k
and R̃ij in (2.21)–(2.24). The same can be done for the
RGE’s which can be derived from (2.13), (2.16) and (2.17).
Since this derivation is easy it is left to the reader. Here
we only want to report the RGE for the left-hand-side of
(2.27) which follows from (2.15) and (2.16). It is given by

D[fk(nf , µ2) + fk̄(nf , µ
2)]

= −γNS
qq (nf )⊗

[
fk(nf , µ2) + fk̄(nf , µ

2)
]

−γ̃PS
qq (nf )⊗Σ(nf , µ2)− γ̃S

qg(nf )⊗G(nf , µ2) .

(2.28)

After having presented the formulae needed for the mass
factorization of the light-parton structure functions F̂i,l
with the corresponding RGE’s we want to deal in a similar
way with the asymptotic heavy-quark coefficient functions
where the large logarithmic terms depending on the heavy-
quark mass m have to be removed. For that purpose we
have to add the heavy-quark contribution to the deep-
inelastic structure function Fi(nf , Q2) (2.26). The former
is

Fi,H(nf , Q2,m2)

=
nf∑
k=1

e2k

[
Σ(nf , µ2)⊗ L̃PS

i,q

(
nf ,

Q2

m2 ,
m2

µ2

)
+G(nf , µ2)⊗ L̃S

i,g

(
nf ,

Q2

m2 ,
m2

µ2

)
+
{
fk(nf , µ2) + fk̄(nf , µ

2)
}
⊗ LNS

i,q

(
nf ,

Q2

m2 ,
m2

µ2

)]

+e2H

[
Σ(nf , µ2)⊗HPS

i,q

(
nf ,

Q2

m2 ,
m2

µ2

)
+G(nf , µ2)⊗HS

i,g

(
nf ,

Q2

m2 ,
m2

µ2

)]
, (2.29)

where eH stands for the charge of the heavy quark denoted
by H. Further Li,k and Hi,k(i = 2, L; k = q, g) represent
the heavy-quark coefficient functions. Like in the case of
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the light-parton coefficient functions Ci,k they can be split
into singlet and non-singlet parts. The former can be de-
composed into non-singlet and purely-singlet pieces in a
similar way as given in (2.19). The distinction between
Li,k and Hi,k can be traced back to the different (virtual)
photon-parton heavy-quark production mechanisms from
which they originate. The functions Li,k are attributed to
the reactions where the virtual photon couples to the light
quarks (u, d, and s), whereas the Hi,k describe the inter-
actions between the virtual photon and the heavy quark.
Hence Li,k and Hi,k in (2.29) are multiplied by e2k and
e2H respectively. Moreover, when the reaction where the
photon couples to the heavy quark contains a light quark
in the initial state, then it can only proceed via the ex-
change of a gluon in the t-channel (see Fig. 1). Therefore
Hi,q is purely-singlet and a non-singlet contribution does
not exist. This is in contrast with Li,q which has both
purely-singlet and non-singlet contributions. Finally we
want to emphasize that all radiative corrections contain-
ing a heavy quark in the loops are included in the heavy
quark coefficient functions of (2.29). Only in this case do
the latter have the appropriate asymptotic Q2-behaviour
so that mass factorization with respect to m2 is possible.

We will now study (2.29) for asymptotic Q2-values.
Therefore we define

F asymp
i,H (nf , Q2,m2) = lim

Q2�m2

[
Fi,H(nf , Q2,m2)

]
.

(2.30)

The asymptotic heavy quark structure function F asymp
i,H

has the same form as F exact
i,H in (2.29) except that the

exact heavy quark coefficient functions are replaced by
the asymptotic ones denoted by Lasymp

i,k and Hasymp
i,k (i =

2, L; k = q, g). The latter are only given by the large log-
arithms, mentioned at the beginning of this section, in-
cluding constant terms. If these terms become too large
they vitiate the perturbation series so that a resummation
via the RGE is necessary. Before this resummation can be
carried out we have first to perform mass factorization
to remove the mass-singular terms lni(µ2/m2) from the
asymptotic heavy-quark coefficient functions. This can be
done in a similar way as shown for the partonic struc-
ture functions in (2.4), (2.5), where now lni(−µ2/p2) are
replaced by lni(µ2/m2).

To perform the mass factorization one has first to add
F asymp
i,H (nf , Q2,m2) to the structure function Fi(nf , Q2)

in (2.26). Then the mass factorization relations for the
coefficient functions Lasymp

i,k read as follows

CNS
i,q (nf ) + Lasymp,NS

i,q (nf ) = ANS
qq,H(nf )⊗ CNS

i,q (nf + 1),
(2.31)

C̃PS
i,q (nf ) + L̃asymp,PS

i,q (nf )

=
[
ANS
qq,H(nf ) + nf Ã

PS
qq,H(nf ) + ÃPS

Hq(nf )
]
⊗ C̃PS

i,q (nf + 1)

+ ÃPS
qq,H(nf )⊗ CNS

i,q (nf + 1) +AS
gq,H(nf )⊗ C̃S

i,g(nf + 1) ,

(2.32)

and

C̃S
i,g(nf ) + L̃asymp,S

i,g (nf )

= ÃS
qg,H(nf )⊗ CNS

i,q (nf + 1) +AS
gg,H(nf )⊗ C̃S

i,g(nf + 1)

+
[
nf Ã

S
qg,H(nf ) + ÃS

Hg(nf )
]
⊗ C̃PS

i,q (nf + 1) . (2.33)

The mass factorization relations for the heavy quark co-
efficient functions Hasymp

i,k become

Hasymp,PS
i,q (nf )

= ÃPS
Hq(nf )⊗

[
CNS
i,q (nf + 1) + C̃PS

i,q (nf + 1)
]

+
[
ANS
qq,H(nf ) + nf Ã

PS
qq,H(nf )

]
⊗ C̃PS

i,q (nf + 1)

+AS
gq,H(nf )⊗ C̃S

i,g(nf + 1) , (2.34)

and

Hasymp,S
i,g (nf )

= AS
gg,H(nf )⊗ C̃S

i,g(nf + 1) + nf Ã
S
qg,H(nf )⊗ C̃PS

i,q (nf + 1)

+ÃS
Hg(nf )⊗

[
CNS
i,q (nf + 1) + C̃PS

i,q (nf + 1)
]
. (2.35)

In the above equations AHk denotes the heavy-quark
OME defined by

AHk

(
nf ,

µ2

m2

)
=< k(p)|OH(0)|k(p) > , (2.36)

which is the analogue of the light-quark OME’s in (2.6).
The quantities Alk,H(nf , µ2/m2), which also appear
above, represent the heavy-quark-loop contributions to
the light-quark and gluon OME’s defined in (2.6).

Although there exists some similarity between the
mass factorization of F̂i,l in (2.4), (2.5) and the ones given
for the heavy-quark coefficient functions above we also ob-
serve a striking difference which leads to the much more
complicated (2.31)–(2.35). The main difference is that the
light partons appear in the initial as well as in the final
state of the subprocesses contributing to F̂i,l whereas the
heavy quark only shows up in the final state of the re-
actions leading to Li,l,Hi,l (2.29). This implies that there
is no analogue for F̂i,H in (2.29) meaning that the coeffi-
cient functions Li,H and Hi,H do not appear in the latter
equation. The same holds for the bare heavy-quark den-
sity f̂H which has no counter part in (2.26) and (2.27)
either. Hence the mass factorization relations in (2.31)–
(2.35) are much more cumbersome than those presented
in (2.4), (2.5). We have explicitly checked that the above
relations hold up to order α2

s using the asymptotic heavy-
quark coefficient functions in [10] and the heavy quark
OME’s in Appendix B.

Yet another complication arises when we consider the
OME’s AHk and Alk,H defined above. Contrary to the
light-parton OME’s in (2.6) which only depend, apart
from µ2, on one mass scale p2 the former also depend
on the mass scale m2 due to the presence of the heavy
quark. Therefore the unrenormalized expressions of AHk
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and Alk,H contain besides ultraviolet (UV) divergences
two types of collinear divergences which are represented by
lni(µ2/p2) (light partons) and lni(µ2/m2) (heavy quark)
respectively. The singularity at p2 = 0 shows up because
external massless lines represented by k = q, g in (2.36)
are coupled to internal massless quanta. This phenomenon
shows up for the first time in order α2

s see [10]. Notice that
the singularities at p2 = 0 also appear in the partonic
quantities leading to the heavy-quark coefficient functions
before they are removed by mass factorization as outlined
in the beginning of this section. Therefore we also have to
subtract the collinear singularities in p2 = 0 from the un-
renormalized OME’s AHk,Alk,H in addition to the UV di-
vergences. This twofold subtraction leads to two different
scales in the renormalized OME’s in (2.31)–(2.36) which
are called the operator-renormalization scale and mass-
factorization scale respectively. Usually these two scales
are set to be equal and they are denoted by one parame-
ter µ2. However the appearance of these two scales results
in more complicated RGE’s for the heavy-quark OME’s
in comparison with those presented for the light-parton
OME’s in (2.12), (2.13) as we will see below. In the actual
calculations of AHk,Alk,H in [10] we have put p2 = 0 in
(2.36) because we did the same for the partonic quanti-
ties computed in [4] leading to the heavy-quark coefficient
functions Li,l, Hi,l. Hence we had to adopt n-dimensional
regularization for the UV as well as the collinear singular-
ities in p2 = 0. In this way both are represented by pole
terms of the type 1/(n− 4)j . If the latter are removed in
the MS-scheme the OME’s AHk and Alk,H automatically
depend on one scale µ.

Another comment we want to make is that αs appear-
ing in the heavy-quark coefficient functions is renormal-
ized at nf flavours. This means that the renormalization
of the coupling constant is carried out in such a way that
all quarks equal to H and heavier than H decouple in the
quark loops contributing to αs. In the right-hand-side of
(2.31)–(2.35) the decoupling of the heavy quark H has
been undone so that here αs depends on nf + 1 flavours.
This decoupling gives rise to additional logarithms of the
type lni(µ2/m2), which are cancelled by the OME’s of the
type Akl,H . However explicit indication of this procedure
further complicates our mass factorization relations above,
which we want to avoid, so we have to bear in mind that
this decoupling is implicitly understood.

If we now insert (2.31)–(2.35) into Fi(nf , Q2)
+F asymp

i,H (nf , Q2,m2) and rearrange some terms then we
obtain our expression for FVFNS

i which is equal to Fi(nf +
1, Q2) in (2.26). This implies that the new parton densities
taken at nf +1 light flavours can be expressed in terms of
those given for nf flavours. The original nf light-flavour
densities get modified so that for k = 1, . . . , nf

fk(nf+1, µ2) + fk̄(nf+1, µ2)

= ANS
qq,H

(
nf ,

µ2

m2

)
⊗
[
fk(nf , µ2) + fk̄(nf , µ

2)
]

+ÃPS
qq,H

(
nf ,

µ2

m2

)
⊗Σ(nf , µ2)

+ÃS
qg,H

(
nf ,

µ2

m2

)
⊗G(nf , µ2) , (2.37)

whereas the parton density of the heavy quark can be
expressed in the original light flavours in the following
way

fH+H̄(nf + 1, µ2)

≡ fnf+1(nf + 1, µ2) + fnf+1(nf + 1, µ2)

= ÃPS
Hq

(
nf ,

µ2

m2

)
⊗Σ(nf , µ2)

+ÃS
Hg

(
nf ,

µ2

m2

)
⊗G(nf , µ2) . (2.38)

Comparing the above expression with (2.27) we observe
that the first term in (2.27) has no counter part in (2.38).
This is because we have no bare heavy-quark density un-
less one assumes that there already exists an intrinsic
heavy-quark component of the proton wave function. The
singlet combination of the quark densities becomes

Σ(nf + 1, µ2) =
nf+1∑
k=1

[
fk(nf + 1, µ2) + fk̄(nf + 1, µ2)

]
=

[
ANS
qq,H

(
nf ,

µ2

m2

)
+ nf Ã

PS
qq,H

(
nf ,

µ2

m2

)
+ÃPS

Hq

(
nf ,

µ2

m2

)]
⊗Σ(nf , µ2) (2.39)

+

[
nf Ã

S
qg,H

(
nf ,

µ2

m2

)
+ ÃS

Hg

(
nf ,

µ

m2

)]
⊗G(nf , µ2) .

The non-singlet combination ∆k(nf + 1) is defined in an
analogous way as in (2.3) and it reads for k = 1, . . . , nf +1

∆k(nf + 1, µ2) = fk(nf + 1, µ2) + fk̄(nf + 1, µ2)

− 1
nf + 1

Σ(nf + 1, µ2) . (2.40)

Finally the gluon density for nf + 1 light flavours is

G(nf + 1, µ2) = AS
gq,H(nf , µ2)⊗Σ(nf , µ2)

+AS
gg,H(nf , µ2)⊗G(nf , µ2) . (2.41)

The old as well as the new parton densities have to
satisfy the momentum sum rule∫ 1

0
dxx

[
Σ(nf , x, µ2) +G(nf , x, µ2)

]
= 1 , (2.42)

for any nf . This implies that the OME’s AHk, Akl,H have
to satisfy two relations∫ 1

0
dxx

[
ANS
qq,H

(
nf , x,

µ2

m2

)
+ nf Ã

PS
qq,H

(
nf , x,

µ2

m2

)
+ÃPS

Hq

(
nf , x,

µ2

m2

)
+AS

gq,H

(
nf , x,

µ2

m2

)]
= 1 , (2.43)
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and ∫ 1

0
dxx

[
nf Ã

S
qg,H

(
nf , x,

µ2

m2

)
+ ÃS

Hg

(
nf , x,

µ2

m2

)
+AS

gg,H

(
nf , x,

µ2

m2

)]
= 1 , (2.44)

which can be checked up to second order using the results
in Appendix B.

The OME’s AHk and Akl,H satisfy the following RGE’s

DÃPS
Hq =

(
γNS
qq + nf γ̃

PS
qq

)
⊗ ÃPS

Hq + γS
gq ⊗ ÃS

Hg

−(γNS
HH + γ̃PS

HH)⊗ ÃPS
Hq − γ̃S

Hg ⊗AS
gq,H

−γ̃PS
Hq ⊗

(
ANS
qq,H + nf Ã

PS
qq,H

)
, (2.45)

DÃS
Hg = γS

gg ⊗ ÃS
Hg + nf γ̃

S
qg ⊗ ÃPS

Hq

−(γNS
HH + γ̃PS

HH)⊗ ÃS
Hg

−γ̃S
Hg ⊗AS

gg,H − nf γ̃
PS
Hq ⊗ ÃS

qg,H , (2.46)

DANS
qq,H = −γNS

qq,H ⊗ANS
qq,H , (2.47)

DÃPS
qq,H = γS

gq ⊗ ÃS
qg,H −

(
γNS
qq,H + nf γ̃

PS
qq,H

)
⊗ ÃPS

qq,H

−γ̃PS
qq,H ⊗ANS

qq,H −
(
γ̃S
qg,H + γ̃S

qg

)
⊗AS

gq,H

−γ̃PS
qH ⊗ ÃPS

Hq , (2.48)

DÃS
qg,H = γ̃S

qg ⊗
(
ANS
qq,H + nf Ã

PS
qq,H

)
+ γS

gg ⊗ ÃS
qg,H

−
(
γNS
qq,H + nf γ̃

PS
qq,H + γNS

qq + nf γ̃
PS
qq

)
⊗ ÃS

qg,H

−
(
γ̃S
qg,H + γ̃S

qg

)
⊗AS

gg,H − γ̃PS
qH ⊗ ÃS

Hg , (2.49)

DAS
gq,H =

(
γNS
qq + nf γ̃

PS
qq

)
⊗AS

gq,H + γS
gq ⊗AS

gg,H

−
(
γS
gq,H + γS

gq

)
⊗
(
ANS
qq,H + nf Ã

PS
qq,H

)
−
(
γS
gg,H + γS

gg

)
⊗AS

gq,H − γS
gH ⊗ ÃPS

Hq ,

(2.50)

and

DAS
gg,H = nf γ̃

S
qg ⊗AS

gq,H − γS
gg,H ⊗AS

gg,H (2.51)

−nf
(
γS
gq,H + γS

gq

)
⊗ ÃS

qg,H − γS
gH ⊗ ÃS

Hg .

The above RGE’s are much more complicated than
those written for Akl in (2.12), (2.13). This is due to
the fact already mentioned below (2.36) that µ repre-
sents the operator-renormalization scale as well as the
mass-factorization scale. In (2.12), (2.13) it only stands

for the operator-renormalization scale. The anomalous di-
mensions coming from operator renormalization carry a
minus sign whereas those associated with mass factoriza-
tion have a plus sign in front of them. This difference
in sign can be traced back to (2.14) where it was stated
that the residues of the ultraviolet divergences are just
the opposite of the ones corresponding to the collinear
divergences. Furthermore one has to bear in mind that
the residues of the ultraviolet and collinear divergences
are equal to the anomalous dimensions coming from oper-
ator renormalization and mass factorization respectively.
In (2.45)–(2.51) the anomalous dimensions γkl have a plus
sign on account of the collinear divergences occurring in
Akl, where the partons indicated by k, l are massless. How-
ever the anomalous dimensions γHH , γHl, γlH and γkl,H
carry a minus sign because the mass of the heavy quark
m prevents these OME’s from being collinearly divergent
so that we only have to deal with ultraviolet singularities.

Using the above equations and (2.15)–(2.17) one can
derive the RGE’s for the new parton densities appearing in
FVFNS
i (2.26). For k = 1, . . . , nf + 1, including the heavy-

quark flavour, the RGE reads

D
[
fk(nf + 1, µ2) + fk̄(nf + 1, µ2)

]
= −γNS

qq (nf + 1)⊗
[
fk(nf + 1, µ2) + fk̄(nf + 1, µ2)

]
−γ̃PS

qq (nf + 1)⊗Σ(nf + 1, µ2)

−γ̃S
qg(nf + 1)⊗G(nf + 1, µ2) . (2.52)

The non-singlet combination of the quark densities satis-
fies the RGE

D∆k(nf + 1, µ2)

= −γNS
qq (nf + 1)⊗∆k(nf + 1, µ2) . (2.53)

The singlet combination of the quark densities satisfies the
RGE

DΣ(nf + 1, µ2) = −γS
qq(nf + 1)⊗Σ(nf + 1, µ2)

−γS
qg(nf + 1)⊗G(nf + 1, µ2) , (2.54)

and the gluon density is given by

DG(nf + 1, µ2) = −γS
gq(nf + 1)⊗Σ(nf + 1, µ2)

−γS
gg(nf + 1)⊗G(nf + 1, µ2) . (2.55)

In the above equations we have used the identities

γij(nf ) + γij,H(nf ) = γij(nf + 1) , (2.56)

γNS
HH(nf + 1) = γNS

qq (nf + 1) ;

γ̃PS
HH(nf + 1) = γ̃PS

qq (nf + 1) , (2.57)

γ̃PS
qH(nf + 1) = γ̃PS

Hq(nf + 1) = γ̃PS
qq (nf + 1) , (2.58)

γS
gH(nf + 1) = γS

gq(nf + 1) ;

γ̃S
Hg(nf + 1) = γ̃S

qg(nf + 1) , (2.59)



M. Buza et al.: Charm electroproduction 309

a

Fig. 3. Two-loop contribution to the OME AS
gq,H . The dashed

and solid lines represent the light quark q and the heavy quark
H respectively

because the anomalous dimensions do not depend on the
mass m of the heavy-quark H. A comparison of the above
RGE’s with those presented for the light-parton densities
in (2.15)–(2.17) reveals that they are exactly the same in
spite of the fact that there is no counterpart of the bare
heavy-quark density in the derivation of (2.52)–(2.55).

All perturbative quantities which appear in this sec-
tion are now available up to O(α2

s). This holds for the
anomalous dimensions γkl [16], the massless-parton coef-
ficient functions Ci,k [17] and the heavy-quark coefficient
functions Li,k, Hi,k [4]. The OME’s ÃPS

Hq, Ã
S
Hg and ANS

qq,H

are computed up to O(α2
s) and listed in unrenormalized

form in Appendix C of [10]. We still require AS
gq,H (Fig. 3)

and AS
gg,H (Fig. 4) which are calculated up to the same

order in this paper. Exact expressions for the unrenor-
malized OME’s can be found in Appendix A. Notice that
up to second order in αs both ÃS

qg,H and ÃPS
qq,H are zero.

The renormalized (finite) expressions for all these OME’s,
which we will use in the next section, are presented in
Appendix B.

After having found the representation of the heavy-
quark density fH+H̄ in (2.38) and the RGE in (2.52)
which determines its scale evolution we can write down the
charm component of the deep-inelastic structure function
in the VFNS representation. The latter is given by

FVFNS
i,H (nf + 1, Q2)

= e2H

[
fH+H̄(nf + 1, µ2)⊗ CNS

i,q

(
nf + 1,

Q2

µ2

)
+Σ(nf + 1, µ2)⊗ C̃PS

i,q

(
nf + 1,

Q2

µ2

)
+G(nf + 1, µ2)⊗ C̃S

i,g

(
nf + 1,

Q2

µ2

)]
. (2.60)

The expression above satisfies DFVFNS
i,H = 0 (see (2.11)),

so it is renormalization group invariant, which means that
it is scheme independent and becomes a physical quan-
tity. Notice that even though the form of FVFNS

i,H is the
same as the one presented for intrinsic heavy-quark pro-
duction, their origins are completely different. In the lat-
ter case expression (2.60) is not derived from perturba-
tion theory and therefore there does not exist any relation
like (2.38) between the heavy-quark density and the light-
parton densities.

Furthermore we want to emphasize that the VFNS ap-
proach presented above is only valid for totally inclusive
quantities like structure functions since the logarithmic
terms lni(Q2/m2) lnj(µ2/m2) only appear in the asymp-
totic form of the heavy-quark coefficient functions in this

a b c

d e f

g h

i j k

l m n

Fig. 4. Two-loop graphs contributing to the OME AS
gg,H . The

dashed and solid lines represent the Faddeev-Popov ghost and
the heavy quark H respectively. The graph with the external
Faddeev-Popov ghost (Fig. 4g) has to be included if the sum
over the gluon polarization states involves the contributions
from unphysical polarizations

case. Hence expression (2.60) is just an alternative descrip-
tion for FOPT when the production of the heavy quarks
occurs far above threshold where Q2 � m2. The only dif-
ference between the FOPT and the VFNS descriptions is
that the large logarithms have been resummed in the lat-
ter approach so that one gets an improved expression with
respect to normal perturbation theory in the large Q2-
region. These specific large logarithms do not show up in
the perturbation series for differential distributions, which
depend on a different set of scales. In this case, as has been
mentioned in the introduction, one can only distinguish
between intrinsic and extrinsic heavy-quark production.

Finally we want to comment about the work in [9]
where one has proposed the idea of the VFNS approach.
In particular we want to make some remarks about (9) in
[9](ACOT) which is similar to our equation (2.60). Using
the notations in the latter reference this equation reads∑

λ

Wλ
BN = fQN ⊗

∑
λ

ω
λ(0)
BQ − fgN ⊗ fQ(1)

g ⊗
∑
λ

ω
λ(0)
BQ

+fgN ⊗
∑
λ

ω
λ(1)
Bg , (2.61)

where we have summed over all helicities of the virtual
photon denoted by λ. Further we have corrected a mis-
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print because fQ(0)
g in (9) should read f

Q(1)
g . To translate

(2.61) into our language we have to make the following
replacements

B → γ∗ ; Q→ H ;
∑
λ

Wλ
BN → FACOT

i,H , (2.62)

∑
λ

ω
λ(0)
BQ → e2H CNS,(0)

i,q = e2Hδ(1− z) ;∑
λ

ω
λ(1)
Bg → e2HH

S,(1)
i,g , (2.63)

fQ(1)
g → Ã

S,(1)
Hg , (2.64)

and

fQN → fH+H̄ ; fgN → G . (2.65)

Hence (2.61) can be written in our notation as

FACOT
i,H = e2H

[
fH+H̄ ⊗ CNS,(0)

i,q +G⊗ C̃S,(1)
i,g

]
(2.66)

+e2H
[
G⊗ {HS,(1)

i,g − C̃S,(1)
i,g − Ã

S,(1)
Hg ⊗ CNS,(0)

i,q }
]
.

Comparing this expression with ours in (2.60) we notice
the following differences. First (2.61) and therefore (2.66)
in [9] was only derived in lowest order (LO), whereas
(2.60) is valid in all orders of perturbation theory. Second
(2.61) and (2.66) are not valid in next-to-leading order
(NLO) but this can be repaired by replacing CNS,(0)

i,q by

CNS,(0)
i,q + (αs/4π) CNS,(1)

i,q in (2.66). However the most im-
portant difference is that the last term between the square
brackets in (2.66) has no counter part in our expression
(2.60). This is because we took the limit Q2 → ∞ and
dropped all terms proportional to (m2/Q2)l in the asymp-
totic heavy-quark coefficient functions. Hence HS,(1)

i,g is re-

placed by Hasymp,S,(1)
i,g (2.35) so that the last part in (2.66)

vanishes. However the exact expressions for HS,(1)
i,g , C̃S,(1)

i,g

and Ã
S,(1)
Hg can be found in the literature (see [4,17] and

[10]). Expanding the latter in powers of m2/Q2 we obtain

H
S,(1)
i,g − C̃S,(1)

i,g − Ã
S,(1)
Hg ⊗ CNS,(0)

i,q

= αs(µ2)
∞∑
l=1

(
m2

Q2 )l
[
a
(l)
i ln(

Q2

m2 ) + b
(l)
i

]
. (2.67)

When Q2 → ∞, (2.67) vanishes as was already expected
from the arguments above. The motivation for the above
expression, included in [9], was to get a better stability
of FVFNS

i,H in the threshold region with respect to varia-
tions in the factorization scale. However we have dropped
these type of contributions as shown in (2.67) in our rep-
resentation for FVFNS

i,H (2.60). A possible generalization of
formula (2.66) is given by

FACOT
i,H (x,Q2,m2) = FVFNS

i,H (x,Q2) + F exact
i,H (x,Q2,m2)

−F asymp
i,H (x,Q2,m2), (2.68)

where FVFNS
i,H , F exact

i,H and F asymp
i,H are given in (2.60), (2.29)

and (2.30). Up to O(αs), FVFNS
i,H and F exact

i,H −F asymp
i,H cor-

respond with the first and the last parts of (2.66) respec-
tively (for the last part see also (2.67)). Further in (2.66)
the term G⊗ H

S,(1)
i,g stands for the lowest order contribu-

tion to F exact
i,H whereas in the same order F asymp

i,H is repre-

sented by G⊗{C̃S,(1)
i,g +Ã

S,(1)
Hg ⊗CNS,(0)

i,q }. The main idea be-
hind (2.68) is that far above threshold FACOT

i,H is given by
FVFNS
i,H which requires the cancelation between F exact

i,H and
F asymp
i,H . This is happening in LO (see [9]) and in NLO (see

the next section). Near threshold FACOT
i,H should be given

by F exact
i,H so that FVFNS

i,H should be cancelled by F asymp
i,H .

According to [9] this happens in LO for charm production
but, as we will show in the next section, certainly not in
NLO.

3 Validity of FOPT and the VFNS

Now we want to investigate which of the two approaches
i.e. FOPT or VFNS, is the most appropriate to describe
the total structure functions Fi(x,Q2) and their charm
(H = c,m = mc) components Fi,c(x,Q2,m2

c) in the differ-
ent kinematical regimes. In particular we are interested in
which region the large logarithms lni(Q2/m2

c) lnj(µ2/m2
c)

dominate the higher order corrections. Further we make
a comparison between the parton densities in our VFNS
given by (2.37)–(2.41) and the ones in the literature. Fi-
nally we study the rate of convergence of the perturbation
series near or far away from the charm threshold region
which will be different for these two approaches.

Before presenting our results we want to mention that
all perturbative quantities like the operator-matrix ele-
ments (OME’s), heavy-quark coefficient functions and
light-parton coefficient functions are presented in the MS-
scheme. Therefore we have to use parton densities
parametrized in the same scheme. Furthermore in FOPT
the number of light flavours in the running coupling con-
stant and the coefficient functions has to be equal to three
(Λ3 = 232 MeV (LO); Λ3 = 248 MeV (NLO)) whereas in
the VFNS this number should be equal to four (Λ4 = 200
MeV (LO and NLO)). For the mass of the charm quark
and the factorization (renormalization) scale we have cho-
sen mc = 1.5 GeV/c and µ2 = Q2 respectively, because
this scale is usually adopted for the light-parton compo-
nents of the structure functions. Notice that in the litera-
ture [6,9,12] different scales (containing m2

c) are chosen for
the charm structure function in FOPT. However the NLO
results are rather independent of the scale as is shown in
[11–13].

First we investigate in which region the large logarith-
mic terms dominate the heavy quark coefficient functions.
To that order we will compute F exact

i,c (2.29) and F asymp
i,c

(2.30) up to NLO. The exact heavy quark coefficient func-
tions occuring in F exact

i,c , which are given by Li,k and and
Hi,k (i = 2, L and k = q, g), are computed up to O(α2

s) in
[4]. Their asymptotic analogues appearing in F asymp

i,c can
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Fig. 5. R2(NLO) (3.1) plotted as a function of Q2 at fixed
x; x = 10−1 (dashed-dotted line), x = 10−2 (dotted line), x =
10−3 (dashed line) and x = 10−4 (solid line)

be found in [10]. The latter are strictly speaking only valid
when Q2 � m2

c . In order to determine the x and Q2 val-
ues above which F exact

i,c and F asymp
i,c coincide we plot the

following ratios

Ri(x,Q2,m2
c) =

F asymp
i,c (x,Q2,m2

c)
F exact
i,c (x,Q2,m2

c)
. (3.1)

For these plots we adopt the GRV94HO parton density set
[18]. The reason that this set is chosen is because it is ob-
tained from a fit to the deep-inelastic scattering data per-
formed in the spirit of the FOPT approach, which means
that the number of active flavours is chosen to be three
and the charm component of the structure function is cal-
culated from the photon-gluon fusion process (albeit with
a scale depending on m2

c) and its higher order QCD cor-
rections.

In Fig. 5 we plot R2(NLO) as a function of Q2 at some
fixed x-values whereas in Fig. 6 similar plots are made for
R2(NLO) as a function of x where Q2 is kept fixed. From
these figures we infer that far above threshold i.e. s >
1000 m2

c , R2 gets close to one (1.1 > R2 > 0.9). The above
value of s (photon-hadron cm energy squared) corresponds
to the kinematical range x < 10−2 andQ2 > 20 (GeV/c)2)
explored by the experiments carried out at HERA [6]. The
reason that we plot Ri (i = 2, L) as a function of x and
Q2 instead of s is that the data are presented for the
former variables. The fact that R2 6= 1 near threshold
s = 4 m2

c , corresponding to large x and small Q2, can be
wholly attributed to threshold terms. The latter, which
are mainly due to soft gluon bremsstrahlung, are present
in the exact heavy-quark coefficient functions. However
they are absent in their asymptotic expressions.

In Figs. 7 and 8 we made similar plots for RL(NLO).
Here the approach to RL = 1 starts at a much larger value
of s i.e. s > 4.104 m2

c which is two orders of magnitude
larger than the one found for R2(NLO). This value cor-
responds with x < 10−2 and Q2 > 103 (GeV/c)2. Here
the threshold effects occuring in the exact heavy quark
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Fig. 6. R2(NLO) (3.1) plotted as a function of x at fixed Q2;
Q2 = 10 (GeV/c)2 (dotted line), Q2 = 50 (GeV/c)2 (dashed
line), Q2 = 100 (GeV/c)2 (solid line)
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Fig. 7. Same as in Fig. 5 but now for RL(NLO)
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Fig. 8. Same as in Fig. 6 but now for RL(NLO)
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coefficient functions become even more conspicuous than
those discovered for R2(NLO). The reason that threshold
effects are dominant at large x and small Q2 (small s) can
be explained when one looks at the convolution∫ zth

x

dz

z
fk

(x
z
, µ2

)
Hi,k

(
z,
Q2

m2 ,
m2
c

µ2

)
, (3.2)

with a similar expression when Hi,k is replaced by Li,k.
Here fk and Hi,k,Li,k denote the parton densities and the
heavy-quark coefficient functions respectively. The thresh-
old value is given by

zth =
Q2

Q2 + 4 m2
c

(3.3)

in the expression for the structure function (2.29). From
the above equations one infers that when x is very large
and Q2 is very small x→ zth so that only threshold terms
can contribute to the integral (3.2). We also would like
to comment on the phenomenon that the approach to
Ri(NLO) = 1 is much slower for i = L than for i = 2.
It originates from the fact that the power of the large log-
arithms appearing in the heavy-quark coefficient functions
in the case of i = L is one unit smaller than that for i = 2.
This phenomenon was also observed for heavy-flavour pro-
duction in the Drell-Yan process [19]. It appears that the
Q2 value for which the exact and asymptotic expressions of
the physical quantities coincide is smaller when the pow-
ers of the large logarithmic terms increase. Notice that the
Born contribution to the longitudinal coefficient function
does not contain logarithms in the limit Q2 � m2

c so that
it is independent of Q2 and m2

c . In this case, as well as
in some interference terms in the Drell-Yan process, the
convergence to the asymptotic expressions takes place at
an extremely large value of Q2.

We have also studied Ri(LO) in the Born approxima-
tion to the charm structure functions in (3.1). Here it turns
out that in the threshold region Ri(LO) is closer to one
than Ri(NLO) (i = 2, L) which means that the thresh-
old effects in the Born approximation are smaller than in
the case of the higher order corrections. However above
s = 1000 m2

c (R2) or s = 4.104 m2
c (RL) we observe that

the ratio Ri(NLO) is closer to one than in the case of
Ri(LO). In Sect. 5 of [10] we made the same study of
Ri in (3.1) but on the level of the heavy-quark coefficient
functions themselves. A comparison with the results from
[10] reveals that the s value (here the cm energy squared
of the photon-parton subprocess) for which the asymp-
totic and exact heavy-quark coefficient functions coincide
is the same as the one obtained for the charm structure
functions in (3.1). Hence the convolution with the parton
densities in (3.2) hardly affects the x and Q2 values at
which the exact and asymptotic expressions coincide.

Next we discuss the parton densities which emerge
from our VFNS approach according to (2.37)–(2.41). The
most interesting among them is the charm-quark density
which appears in the four-flavour scheme. It is derived
from the formula in (2.38) where we choose nf = 3. Up to
O(α2

s) (2.38) becomes equal to

fVFNS
c+c̄ (4, x, µ2) ≡ f4(4, x, µ2) + f4̄(4, x, µ

2)

=
(αs(µ2)

4π

)2
∫ 1

x

dz

z
Σ
(
3,
x

z
, µ2

)
ÃPS,(2)
cq

(
z,

µ2

m2
c

)
+
∫ 1

x

dz

z
G
(
3,
x

z
, µ2

)[(αs(µ2)
4π

)
ÃS,(1)
cg

(
z,

µ2

m2
c

)
+
(αs(µ2)

4π

)2
ÃS,(2)
cg

(
z,

µ2

m2
c

)]
,

(3.4)

where ÃPS,(2)
cq , ÃS,(i)

cg (i = 1, 2) are the OME’s presented in
(B.1)–(B.3) (with H = c) which are renormalized in such
a way that αs in (3.4) depends on four flavours (Λ4 = 200
MeV). Further one has to put nf = 3 in the OME’s above,
which, up to order α2

s, are independent of the number of
flavours. The quantities Σ(3, µ2) and G(3, µ2) represent
the singlet combination of parton densities and the gluon
density in the three-flavour scheme respectively. Notice
that the O(αs) term was already introduced in (10) of
[9]. From the above equation one infers that up to O(αs)
(LO), fVFNS

c+c̄ (4, x,m2
c) = 0 due to the vanishing of the

lowest order OME Ã
S,(1)
cg (B.2) at µ = mc. However since

Ã
PS,(2)
cq (B.1) and Ã

S,(2)
cg (B.3) do not vanish at µ = mc

we get fVFNS
c+c̄ (4, x,m2

c) 6= 0 up to O(α2
s). It will turn out

that the difference with the existing parton density sets,
which satisfy the condition fc+c̄(4, x,m2

c) = 0, will be very
small because, after resummation of the lni(µ2/m2

c)-terms
via the RGE, the effect shows up in NNLO only. What
one does with the non-logarithmic terms is a question of
the choice of scheme. To compare with the scale evolu-
tion of the existing parton densities we will remove the
non-logarithmic terms in (B.1) and (B.3) so that both the
charm quark density in (3.4) and the ones in the literature
satisfy the condition fc+c̄(4, x,m2

c) = 0. For a comparison
we choose the GRV92HO set [20]. The reason is that the
GRV92 set contains a charm-quark density which is not
present in the GRV94 set [18]. In Fig. 9 we plot the ratio

Rch =
fVFNS
c+c̄ (4, x, µ2)
fPDF
c+c̄ (4, x, µ2)

, (3.5)

as a function of µ2 at some fixed x-values. Here fVFNS
c+c̄

is computed from (3.4) by choosing the parton density
set GRV92HO [20] for the determination of Σ(3, µ2) and
G(3, µ2) while fPDF

c+c̄ is the charm-quark density belong-
ing to the same set. For x < 10−2 it turns out that
1 > Rch > 0.9. This is surprising because (3.4) is calcu-
lated up to finite order in perturbation theory whereas the
GRV density is the NLO solution of the RGE’s in which
all leading and next-to-leading logarithms are resummed.
Hence we should expect a larger difference between the
scale evolutions. However from the results in [21,22] we
anticipate that this difference is not so dramatic as long as
µ2/m2

c < 103. Apparently the leading logarithms beyond
O(α2

s), which are neglected in (3.4), but not in the GRV
charm quark density, do not play an important role pro-
vided µ2 is not chosen to be too large. We have also made
a comparison with other charm quark densities in the lit-
erature like the ones from CTEQ [23] and MRS [24] and
we found a similar result for the scale evolution. However
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Fig. 9. The ratio Rch = fVFNS
c+c̄ /fPDF

c+c̄ (3.5) as a function of
µ2 at fixed x in NLO. The charm densities fVFNS

c+c̄ and fPDF
c+c̄

are given by (3.4) and the set GRV92HO [20] respectively; x =
10−1 (dashed-dotted line), x = 10−2 (dotted line), x = 10−3

(dashed line), x = 10−4 (solid line)

in the latter sets Rch deviates more from one than shown
by [20]. Notice that in [20,23] and [24] all parton densities
are presented in a four flavour scheme whereas in (3.4)
one should have chosen for Σ(3, µ2) and G(3, µ2) a three
flavour scheme. However the differences between the rep-
resentations for the three and four flavour schemes of the
light parton densities (u,d,s) and g are very small as we
will show below. The modification for the light-quark den-
sities is given by (2.37). Summing the latter over the three
light flavours (u,d and s) one obtains the singlet density
corrected up to O(α2

s) which is given by

Σ′(4, x, µ2) =
∫ 1

x

dz

z
Σ
(
3,
x

z
, µ2

)
×
[
δ(1− z) +

(αs(µ2)
4π

)2
ANS,(2)
qq,c

(
z,

µ2

m2
c

)]
, (3.6)

where ANS,(2)
qq,c is given in (B.4) (with H = c). Notice that

Σ(4, x, µ2) = Σ′(4, x, µ2) + fc+c̄(4, x, µ2) in (2.39). Up to
O(α2

s) the gluon density in the four-flavour scheme (see
(2.41)) is

G(4, x, µ2) =
(αs(µ2)

4π

)2
∫ 1

x

dz

z
Σ
(
3,
x

z
, µ2

)
AS,(2)
gq,c

(
z,

µ2

m2
c

)
+
∫ 1

x

dz

z
G
(
3,
x

z
, µ2

)[
δ(1− z) +

(αs(µ2)
4π

)
AS,(1)
gg,c

(
z,

µ2

m2
c

)
+
(αs(µ2)

4π

)2
AS,(2)
gg,c

(
z,

µ2

m2
c

)]
. (3.7)

The functions A
S,(2)
gq,c and A

S,(i)
gg,c (i = 1, 2) are given in

(B.5)-(B.7) (with H = c). Notice that up to O(α2
s) the

above OME’s are independent of the number of internal
flavours nf . In Fig. 10 we show the singlet combinations
of parton densities Σ(3, µ2) and Σ′(4, µ2) (3.6) and, as the
difference between them is O(α2

s), it is essentially invisible.
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Fig. 10. Σ(3, x, µ2) and Σ′(4, x, µ2) (the difference between
both singlet combinations of quark densities is unnoticeable in
the figure) plotted as functions of µ2 at fixed x; x = 10−1 (solid
line), x = 10−2 (dashed line), x = 10−3 (dotted line), x = 10−4

(dashed-dotted line)
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Fig. 11. G(3, x, µ2) (lower lines) and G(4, x, µ2) (upper lines)
plotted as functions of µ2 at fixed x; x = 10−1 (dashed-dotted
line), x = 10−2 (dotted line), x = 10−3 (dashed line), x = 10−4

(solid line)

Therefore the error made in choosing Σ(3, µ2) instead of
Σ′(4, µ2) above the charm threshold is extremely small.
In Fig. 11 we make the same study for the gluon den-
sity where we compare G(3, µ2) with G(4, µ2). Here the
latter function yields the higher curves. In this case the
difference is larger than for the singlet-quark combination
(3.6). This is no surprise because for the gluon density the
modification already starts on the O(αs) level (see (3.7)).

Summarizing our findings above we can conclude that
for the actual computation of the charm structure func-
tion in (2.60), it does not makes much difference when the
light-flavour densities computed via (3.4), (3.6) and (3.7)
(using fixed order perturbation theory) are replaced by
those obtained from the various parton-density sets avail-
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able in the literature. To distinguish between the use of
(3.4), (3.6), (3.7) and the parton densities in the literature
for the computation of (2.60) we denote the corresponding
charm structure functions in the subsequent part of this
section by FVFNS

2,c and FPDF
2,c , respectively.

Now we want to study the differences between the
FOPT and VFNS approaches for the description of the
charm structure function F2,c. Using the set GRV92HO
[20] we present plots in Figs. 12a–e for F exact

2,c (2.29)
(FOPT) and FVFNS

2,c (2.60) which are computed up to
NLO. From these figures we infer that at large x and for
Q2-values greater than Q2 = 3 (GeV/c)2 one hardly sees
any difference between both approaches so that thresh-
old effects in F exact

2,c are invisible. However at small x (
x < 10−2 ) the difference between F exact

2,c and FVFNS
2,c be-

comes more conspicuous. It is in this region that data will
appear from the HERA collider experiments. Although
the difference is not that large at Q2 = 3 (GeV/c)2 it be-
comes big for 5 < Q2 < 10 (GeV/c)2 (see Figs. 12b,c).
Here FVFNS

2,c exceeds F exact
2,c by more than 60% with respect

to the latter quantity at x = 10−4. The difference becomes
less when Q2 increases, e.g. at Q2 = 100 (GeV/c)2 (Fig.
12e) it is about 25%. This is an indication of the size of
resummation effects in this region. Further we have also
plotted F asymp

2,c (2.30). As expected from Figs. 5,6 this
function approaches F exact

2,c in the region far above the
charm production threshold i.e. x < 10−2 and Q2 > 20
(GeV/c)2. We did not plot F asymp

2,c at Q2 = 3 (GeV/c)2

(Fig. 12a) because here it becomes negative for x < 0.1
(threshold region !). From Figs. 12b–e one observes a no-
ticeable difference between F asymp

2,c and FVFNS
2,c . This is be-

cause F asymp
2,c is computed up to order α2

s whereas FVFNS
2,c

also involves α3
s contributions. The latter are due to the

convolutions in (2.60) of the order α2
s corrected densi-

ties in (3.4), (3.6) and (3.7) with the order αs corrected
light-parton coefficient functions. Due to the large loga-
rithms these order α3

s contributions are quite appreciable
and they survive in the region 3 < Q2 < 100 (GeV/c)2
covered by our plots. The corrections beyond order α2

s

present in FVFNS
2,c can be resummed using the RGE’s in

(2.52)–(2.55). This procedure has been applied to obtain
the parton densities (here GRV92HO) present in FPDF

2,c .
Figs. 12a–e show that FPDF

2,c is slightly larger than FVFNS
2,c

which is not surprising because the parton densities rep-
resent the resummation of the large logarithms appearing
beyond O(α2

s).
We also want to comment on the presentation of the

charm structure function according to [9] (ACOT) of
which the generalization is given in (2.68). In the previ-
ous figures we have seen that for Q2 > 20(GeV/c)2, F exact

i,c

approaches F asymp
i,c so that FACOT

i,c coincides with FVFNS
i,c .

Therefore FACOT
i,c gives a good description of the charm

structure function at large Q2-values. However at small
Q2, FVFNS

i,c 6= F asymp
i,c (see Figs .12b–e) so that FACOT

i,c is
not dominated by F exact

i,c . Therefore FACOT
i,c (2.68) does

not have the correct threshold behaviour exhibited by
F exact
i,c . The inequality between FVFNS

i,c and F asymp
i,c is due

to the large value of αs(Q2) and the different ways the
corrections beyond O(αs) have been included in the lat-
ter two functions. In our case F asymp

i,c is computed up
O(α2

s) whereas FVFNS
i,c even contains O(α3

s) contributions.
If FVFNS

i,c is replaced by FPDF
i,c the above inequality be-

comes even larger since the latter even includes contribu-
tions beyond O(α3

s). Due to these considerations and the
fact that the large logarithms only become relevant far
above threshold the expressions for F asymp

i,c , FVFNS
i,c and

FPDF
i,c have no physical meaning in the region given by

large x and low Q2. Hence they cannot be considered as
a good approximation in this region and the charm struc-
ture function should only be represented by F exact

i,c . We
have also studied the total structure function F2(x,Q2),
where the charm component is included. Since this struc-
ture function is dominated by the light-parton (u,d,s and
g) contributions the differences between the various de-
scriptions is much smaller than those observed for the
charm component. At maximum these differences are of
the order of 10%, which occurs in the region 5 < Q2 < 10
(GeV/c)2.

To study the stability of the perturbation series for
Fi,c one can proceed in two different ways. The first one is
discussed in [9] and concerns the behaviour of the charm
structure function with respect to variations in the factor-
ization scale. It was found that near threshold (large x and
small Q2) F exact

2,c shows a better stability than FVFNS
2,c un-

der variations of the factorization scale. Far above thresh-
old it turns out that just the opposite happens, so that
at large Q2 it is more preferable to use FVFNS

2,c instead of
F exact

2,c (FOPT). However in the analysis of [9] the NLO
corrections from [4] were not taken into account. In [11,
12] and [13] these corrections were included and one could
show that far away from threshold F exact

2,c is as stable as
FVFNS

2,c with respect to variations in the factorization scale.
The second way to study the stability of the perturba-
tion series is to look at the actual size of the higher or-
der corrections. They have to decrease when the order in
αs increases. To be more specific we study the following
quantities

K(1) =
F2,c(x,Q2)(NLO)
F2,c(x,Q2)(LO)

,

K(2) =
F2,c(x,Q2)(NNLO)
F2,c(x,Q2)(NLO)

. (3.8)

Our criterion is that the perturbation series gets more
stable if K(l) → 1 for increasing l where l indicates the
order in the perturbation series. Here we want to com-
pare K(1),exact (FOPT) with K(l),VFNS (l = 1, 2), which
are derived from F exact

2,c (2.29) and FVFNS
2,c (2.60), respec-

tively. Both are known in LO and NLO. The structure
function FVFNS

2,c is also known in NNLO as far as the light-
parton coefficient functions (see [17]) are concerned. The
NNLO parton densities are not known because the three-
loop splitting functions (anomalous dimensions) have not
been calculated yet. In virtue of the discussions above we
will replace FVFNS

2,c by FPDF
2,c because this does not appre-
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Fig. 12a–e. a: The charm component of the struc-
ture function given by F2,c in NLO as a function of
x at Q2 = 3 (GeV/c)2; F exact

2,c (x,Q2,m2) (solid line),
FVFNS

2,c (4, x,Q2) (dashed line), FPDF
2,c (4, x,Q2) (dotted line)

with PDF=GRV92HO. b: The charm component of the
structure function given by F2,c in NLO as a function
of x at Q2 = 5 (GeV/c)2; F exact

2,c (x,Q2,m2) (solid line),
FVFNS

2,c (4, x,Q2) (dashed line), FPDF
2,c (4, x,Q2) (dotted line)

with PDF=GRV92HO , and F asymp
2,c (x,Q2,m2) (dashed-

dotted line). c: Same as in Fig. 12b but now for Q2 = 10
(GeV/c)2. d: Same as in Fig. 12b but now for Q2 = 50
(GeV/c)2. e: Same as in Fig. 12b but now for Q2 = 100
(GeV/c)2

ciably change the results. In Figs. 13a–e we plot K(1),exact,
K(1),PDF and K(2),PDF, choosing the set GRV92HO [20].
From these figures we infer that for Q2 < 5 (GeV/c)2,
K(1),exact is rather close to unity over the whole x-range
contrary to K(l),PDF (l = 1, 2) where the latter deviate
from unity in spectacular ways. In the region 5 ≤ Q2 < 10
(GeV/c)2 the deviation from unity at small x becomes the

same for both K-factors. However at large x (x > 0.01)
K(1),exact is still closer to one than K(1),PDF. This picture
changes when Q2 ≥ 10 (GeV/c)2. At large x (x > 0.01),
both K-factors equally differ from one but at small x the
deviation becomes less for K(l),PDF. When Q2 increases
(see Figs. 13d,e), K(2),PDF becomes much closer to one
than K(1),PDF even in the large x-region. Here we also no-
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Fig. 13a–e. a: The ratios K(l)(x,Q2) ((3.9)) plotted as
functions of x at Q2 = 3 (GeV/c)2; K(1),exact (solid
line), K(1),PDF (dashed line), K(2),PDF (dotted line), with
PDF=GRV92HO. b: Same as in Fig. 13a but now for Q2 = 5
(GeV/c)2. c: Same as in Fig. 13a but now for Q2 = 10
(GeV/c)2. d: Same as in Fig. 13a but now for Q2 = 50
(GeV/c)2. e: Same as in Fig. 13a but now for Q2 = 100
(GeV/c)2

tice a considerable improvement when the NNLO correc-
tions are included. In particular K(2),PDF is much closer
to one than K(1),PDF at larger Q2-values, indicating the
rapid convergence of the perturbation series in the case of
VFNS. If one adopts the convergence of the perturbation
series as a criterium to decide about the quality of the two
approaches (FOPT versus VFNS) in the various kinemat-

ical regimes we conclude that for Q2 > 10 (GeV/c)2 it is
better to use FVFNS

2,c instead of F exact
2,c even when x gets

large.
The most important results found in this paper can be

summarized as follows. When the charm structure func-
tion F2,c is computed in FOPT far above the charm pro-
duction threshold, given by x < 0.01 and Q2 >
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20 (GeV/c)2, the results obtained from the exact (F exact
2,c )

and the asymptotic heavy-quark coefficient functions
(F asymp

2,c ) are indistinguishable. Hence in this region the
large logarithms dominate the perturbation series and they
can be resummed after having performed mass factor-
ization on the heavy-quark coefficient functions. In this
way starting from F asymp

2,c in the three-flavour scheme one
can derive an expression for FVFNS

2,c valid in the four-
flavour scheme. This procedure imposes a relation be-
tween the parton density sets parametrized at three and
four flavours, which has to be satisfied in the VFNS ap-
proach. In particular the charm quark density has to sat-
isfy the condition fV FNS

c (x,m2
c) 6= 0 (MS-scheme) con-

trary to what is imposed in the literature. In practice this
has no serious consequences for the prediction of FVFNS

2,c ,
which is almost equal to FPDF

2,c . Further it turns out that
FVFNS

2,c > F exact
2,c for all Q2-values due to higher-order cor-

rections which are included in VFNS. Finally we have
shown that for x < 0.01 and Q2 < 10 (GeV/c)2 the con-
vergence of the perturbation series is better for FOPT
than for VFNS. When Q2 > 10 (GeV/c)2 just the op-
posite happens. Because of this observation and the fact
that the large logarithms dominate in FOPT if x < 0.01
and Q2 > 20 (GeV/c)2 we conclude that in this region
the best description of the data is provided by VFNS (see
(2.60)). For Q2 < 20 (GeV/c)2 it is much better to use
FOPT (see (2.29)) over the whole x-range. This conclusion
is somewhat corroborated by the recent data from the H1-
collaboration [6] and the older EMC data on charm pro-
duction recently examined in [25]. The former data, which
are in the range x < 0.01 and 10 < Q2 < 100 (GeV/c)2,
lie above the predictions of FOPT meaning that VFNS
gives a better description. On the other hand the similar
Q2- but large x-data obtained by EMC show that in this
case the best theoretical description is given by FOPT.
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Appendix A

In this appendix we present the unrenormalized operator-
matrix elements ÂS,(2)

gq,H , ÂS,(1)
gg,H and Â

S,(2)
gg,H where ÂS,(i)

kl,H de-
note the coefficients of (αs/4π)i in the perturbation se-
ries of the operator-matrix elements (OME’s). The corre-
sponding two-loop Feynman graphs are presented in Fig.
3 and Fig. 4 respectively and the calculation proceeds in
the same way as is outlined for the other OME’s in [10].
Using n-dimensional regularization for the ultraviolet and
collinear divergences the results are given by (n = 4 + ε)

Â
S,(2)
gq,H

(m2

µ2 , ε
)

= S2
ε

(m2

µ2

)ε
CFTf

{
1
ε2

[
64
3z
− 64

3
+

32
3
z

]

+
1
ε

[
160
9z

− 160
9

+
128
9
z +

(
32
3z
− 32

3
+

16
3
z

)
ln(1− z)

]

+
4
3

(
2
z
− 2 + z

)
ln2(1− z) +

8
9

(
10
z
− 10 + 8z

)
ln(1− z)

+
8
3

(
2
z
− 2 + z

)
ζ(2) +

1
27

(
448
z
− 448 + 344z

)}
. (A.1)

Here Sε denotes the spherical factor which is given by

Sε = exp
{ ε

2
(γE − ln 4π)

}
, (A.2)

where γE is the Euler constant.

Â
S,(1)
gg,H

(m2

µ2 , ε
)

= Sε

(m2

µ2

) ε
2

[
1
ε
Tf

(
8
3
δ(1− z)

)]
,(A.3)

Â
S,(2)
gg,H

(m2

µ2 , ε
)

= S2
ε

(m2

µ2

)ε
×
[

1
ε2

{
CFTf

[
32(1 + z) ln z +

64
3z

+ 16− 16z − 64
3
z2

]

+CATf

[
32
3

(
1

1− z

)
+

+
32
3z
− 64

3
+

32
3
z − 32

3
z2

]}

+
1
ε

{
CFTf

[
8(1 + z) ln2 z + (24 + 40z) ln z − 16

3z
+ 64

−32z − 80
3
z2 + 4δ(1− z)

]

+CATf

[
16
3

(1 + z) ln z +
80
9

(
1

1− z

)
+

+
184
9z

− 232
9

+
152
9
z − 184

9
z2 +

16
3
δ(1− z)

]}
+ a

(2)
gg,H(z)

]
,

+
t∑

f=H

S2
ε

(m2
f

µ2

)ε/2(m2

µ2

)ε/2
×
[

1
ε2
T 2
f

{
64
9

(
1 +

ε2

4
ζ(2)

)
δ(1− z)

}]
, (A.4)

with

a
(2)
gg,H(z) = CFTf

{
4
3
(1 + z) ln3 z + (6 + 10z) ln2 z

+(32 + 48z) ln z + 8(1 + z)ζ(2) ln z

+

(
16
3z

+ 4− 4z − 16
3
z2

)
ζ(2)− 8

z
+ 80− 48z − 24z2

−15δ(1− z)

}
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+CATf

{
4
3
(1 + z) ln2 z +

1
9
(52 + 88z) ln z − 4

3
z ln(1− z)

+
8
3

[(
1

1− z

)
+

+
1
z
− 2 + z − z2

]
ζ(2)

+
1
27

[
224

(
1

1− z

)
+

+
556
z
− 628 + 548z − 700z2

]

+
10
9
δ(1− z)

}
. (A.5)

The last term in (A.4), which is proportional to T 2
f , is due

to the one-loop correction to Â
S,(1)
gg,H in (A.3). This cor-

rection is represented by the heavy quark (f) loop con-
tribution to the gluon self energy where f represents all
heavy flavours starting with the quark H (mH ≡ m) and
ending with the top quark t. The corresponding graph is
not shown in Fig. 4. In the next section the renormal-
ization of the OME ÂS

gg,H will be chosen in such a way
that the heavy quarks with mf > m decouple from the
running coupling constant. This implies that the contri-
butions in the sum of (A.4) with f > H completely vanish
in the renormalized OME ÂS

gg,H presented in the next sec-
tion. However the contribution due to f = H remains in
the renormalized expressions like those coming from the
nf light flavours. This renormalization prescription im-
plies that the running coupling constant is presented in
the MS-scheme and it depends on nf + 1 light flavours
including the heavy quark H.

The 1/(1 − z)+ terms appearing in (A.4) and (A.5)
have to be understood as distributions, namely∫ 1

0
dz

(
1

1− z

)
+

f(z) =
∫ 1

0
dz

1
1− z

[f(z)− f(1)] .

(A.6)

The colour factors in SU(N) are given by

CF =
N2 − 1

2N
CA = N Tf =

1
2
, (A.7)

with N = 3 for QCD.

Appendix B

Here we present the renormalized operator-matrix ele-
ments (OME’s) corresponding to the unrenormalized ex-
pressions given in Appendix C of [10] and in Appendix A
of this paper. All OME’S have been renormalized in the
MS-scheme. In particular the renormalized coupling con-
stant is presented in the above scheme for nf + 1 light
flavours. Here the heavy quark H is treated on the same
footing as the light flavours and it is not decoupled from
the running coupling constant in the VFNS approach. The
(αs/4π)2 coefficient in the heavy-quark OME ÃPS

Hq is given
by

Ã
PS,(2)
Hq

(
m2

µ2

)
= CFTf

{[
−8(1 + z) ln z − 16

3z
− 4 + 4z

+
16
3
z2

]
ln2 m

2

µ2 +

[
8(1 + z) ln2 z −
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3
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)
ln z

−160
9z
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9
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ln
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[
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+16 ln zLi2(1− z)− 16ζ(2) ln z − 4
3

ln3 z

]
+

(
32
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3
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Li2(1− z) +

(
−32

3z
− 8 + 8z +

32
3
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)
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+

(
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16
3
z2

)
ln2 z −

(
56
3

+
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3
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448
9
z2

)
ln z

−448
27z

− 4
3
− 124

3
z +

1600
27

z2

}
, (B.1)

The (αs/4π) and the (αs/4π)2 coefficients of the heavy
quark OME ÃS

Hg are

Ã
S,(1)
Hg

(
m2

µ2

)
= Tf

[
−4(z2 + (1− z)2) ln

m2

µ2

]
, (B.2)

and

Ã
S,(2)
Hg

(
m2

µ2

)
=

{
CFTf

[
(8− 16z + 16z2) ln(1− z)

−(4− 8z + 16z2) ln z − (2− 8z)
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+16− 200z +
1744

9
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ln
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+CFTf
{
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respectively. Now we present the renormalized expressions
for the heavy-quark loop contributions to the light-parton
OME’s denoted by Akl,H . The coefficients of the (αs/4π)2
terms in Aqq,H and Agq,H are

A
NS,(2)
qq,H
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µ2
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and
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respectively. The coefficients of the αs/4π and (αs/4π)2
terms in Agg,H are
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and
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+CFTf

{
4
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respectively.
The definitions for the polylogarithms Lin(z) and the

Nielsen functions Sn,p(z), which appear in the above ex-
pressions, can be found in [26]. We have checked that the
renormalized OME’s given above satisfy the sum rules pre-
sented in (2.43) and (2.44). This provides us with a strong
check on our results in [10] and in this paper.

References

1. S.J. Brodsky, P. Hoyer, A.H. Mueller, W.-K. Tang, Nucl.
Phys. B369 (1992) 519. R. Vogt and S.J. Brodsky, Nucl.
Phys. B438, (1995) 261

2. E. Witten, Nucl. Phys. B104 (1976) 445. J. Babcock
and D. Sivers, Phys. Rev. D18 (1978) 2301. M.A. Shif-
man, A.I. Vainstein and V.J. Zakharov, Nucl. Phys. B136
(1978) 157. M. Glück and E. Reya, Phys. Lett. B83 (1979)
98. J.V. Leveille and T. Weiler, Nucl. Phys. B147 (1979)
147

3. R.K. Ellis and P. Nason, Nucl. Phys. B312 (1989) 551. J.
Smith and W.L. van Neerven, Nucl. Phys. B374 (1992)
36

4. E. Laenen, S. Riemersma, J. Smith and W.L. van Neerven,
Nucl. Phys. B392 (1993) 162, 229. S. Riemersma, J. Smith
and W.L. van Neerven, Phys. Lett. B347 (1995) 43. B.W.
Harris and J. Smith, Nucl. Phys. B452 (1995) 109

5. S. Aid et al. (H1-collaboration), Nucl. Phys. B472 (1996)
32

6. C. Adloff et al. (H1-collaboration), Z. Phys. C72 (1996)
593

7. S. Riemersma, J. Smith and W.L. van Neerven, Phys.
Lett. B282 (1992) 171. S. Frixione et al. Nucl. Phys.
B412, (1994) 225; B431, (1994) 453

8. M. Glück, E. Hoffmann and E. Reya, Z. Phys. C13 (1982)
119. M. Glück, R.M. Godbole and E. Reya, Z. Phys. C38
(1988) 441

9. M.A.G. Aivazis, J.C. Collins, F.I. Olness and W.-K. Tung,
Phys. Rev. D50 (1994) 3102

10. M. Buza, Y. Matiounine, J. Smith, R. Migneron and W.L.
van Neerven, Nucl. Phys. B472 (1996) 611

11. M. Glück, E. Reya and M. Stratmann, Nucl. Phys. B422
(1994) 37

12. A. Vogt, DESY-96-012, hep-ph/9601352
13. F.I. Olness and S.T. Riemersma, Phys. Rev. D51 (1995)

4746
14. G. Kramer, B. Lampe and H. Spiesberger, Z. Phys. C72

(1996) 99
15. A.D. Martin, R.G. Roberts, M.G. Ryskin and W.J. Stir-

ling, DTP/96/102, RAL-TR-96-103
16. G. Curci, W. Furmanski and R. Petronzio, Nucl. Phys.

B175 (1980) 27. W. Furmanski and R. Petronzio, Phys.
Lett. B97 (1980) 437; Z. Phys. C11 (1982) 293

17. E.B. Zijlstra and W.L. van Neerven, Nucl. Phys. B383
(1992) 525

18. M. Glück, E. Reya and A. Vogt, Z. Phys. C67 (1995) 433
19. P.J. Rijken and W.L. van Neerven, Phys. Rev. D52 (1995)

149
20. M. Glück, E. Reya and A. Vogt, Z. Phys. C53 (1992) 127
21. E.B. Zijlstra and W.L. van Neerven, Nucl. Phys. B417

(1994) 61
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